"Developments in Microwave Photonics" - 29th April 2021, 15:00-17:00

High-Speed Plasmonic Modulators for Microwave Photonics

<u>**M. Burla**</u>^{1,*}, C. Hoessbacher¹, W. Heni¹, C. Haffner¹, Y. Fedoryshyn¹, D. Werner¹, T. Watanabe¹, Y. Salamin¹, H. Massler², D. L. Elder³, L. R. Dalton³, and J. Leuthold¹

¹ Institute of Electromagnetic Fields (IEF), ETH Zurich, Switzerland

- ² Fraunhofer IAF, Freiburg im Breisgau, Germany
- ³ University of Washington, Seattle, WA, USA

mburla@ethz.ch

Contents

Introduction

The wireless revolution and the bandwidth bottleneck

Plasmonic Modulators for THz Applications

Plasmonic phase and intensity modulators

Analog Performance Characterization

- Nonlinear distortions
- Power handling
- Speed tests

Applications

- Plasmonic links: sub-THz analog link
- Plasmonic beamforming: ultrafast beamsteering at mm-waves
- Plasmonic mixers: direct THz-to-optical conversion

Conclusions

Contents

Introduction

- The wireless revolution and the bandwidth bottleneck
- Plasmonic Modulators for THz Applications
 - Plasmonic phase and intensity modulators
- Analog Performance Characterization
 - Nonlinear distortions
 - Power handling
 - Speed tests
- Applications
 - Plasmonic links: sub-THz analog link
 - Plasmonic beamforming: ultrafast beamsteering at mm-waves
 - Plasmonic mixers: direct THz-to-optical conversion

Conclusions

The Wireless Revolution

Mobile Data and Internet Traffic

Source: Cisco Visual Networking Index: Forecast and Trends 2017-2022

The Wireless Revolution

Mobile Data and Internet Traffic

- Mobile data traffic:
 - Exponential growth (2x as fast as fixed IP traffic)
 - 7x increase between 2017 and 2022
- Traffic from wireless/mobile devices: 71% of total IP traffic by 2022

Source: Cisco Visual Networking Index: Forecast and Trends 2017-2022

The Bandwidth Bottleneck

Wireless Network Internet of Things Mobile phones Car-to-car communication Local mobile tower Personal devices Hard-wired networks Data

centre

State-of-the-Art (4G): up to 100 Mbit/s

> ×100-1000 times capacity demand (5G): 10s-100s Gbit/s

Fiber Network

The Millimeter-Wave Spectrum

• *Opportunity*: >100 GHz bandwidth available

The Millimeter-Wave Spectrum

- *Opportunity*: >100 GHz bandwidth available
- Challenge: high loss (short range), sensitive to blockage
 - Many base stations needed (small cells)
 - Directive beams + direction control

The Millimeter-Wave Spectrum

- Opportunity: >100 GHz bandwidth available
- Challenge: contiguous bandwidth available < 9 GHz</p>
- > 100 Gbps difficult:
 - e.g. 512-QAM @ 1 Gbaud \rightarrow 128 Gbps
 - \rightarrow Difficult to have long (~100s m) links

Seeds, A. J., et al. (2015). "TeraHertz Photonics for Wireless Communications." Journal of Lightwave Technology, 33(3): 579-587.

The Millimeter-Wave Spectrum

What's next?

Seeds, A. J., et al. (2015). "TeraHertz Photonics for Wireless Communications." Journal of Lightwave Technology, 33(3): 579-587.

Communications in the THz band (> 300 GHz)

 THz band (300 GHz – 10 THz) considered as the "next frontier" for the 100s Gbps data-rate target: extremely large BW available [1]

- Atmospheric absorption due to H₂O vapor
- Spectral windows exist between 200 GHz and 450 GHz

11

[1] S. Jia, X. Pang, O. Ozolins et al., "0.4 THz Photonic-Wireless Link With 106 Gb/s Single Channel Bitrate," Journal of Lightwave Technology, 36(2), 610-616 (2018).
[2] Seeds, A. J., et al. (2015). "TeraHertz Photonics for Wireless Communications." Journal of Lightwave Technology, 33(3): 579-587.

Communications in the THz band (> 300 GHz)

A possible scenario

- THz wireless signals received by an antenna
- Converted to the optical domain
- Transported over an analog radio-over-fiber link

Communications in the THz band (> 300 GHz)

• A possible scenario

- THz wireless signals received by an antenna
- Converted to the optical domain
- Transported over an analog radio-over-fiber link
- Need of modulator with:

(1) sub-THz bandwidth, (2) high linearity, (3) high-power handling

State-of-the-Art Modulators

Very recently: impressive progress in LiNbO₃ modulators

- Oxide-bonding thin-film LiNbO₃ on SiP chip
- BW_{3dB} > 106 GHz

Uni. Delaware

- Crystal ion sliced LiNbO₃
- $V_{\pi,DC} = 3.8 V \cdot cm$

Harvard

- LiNbO₃ on Si
- Length 20 mm
- IL = 0.5 dB
- BW_{3dB} = 40 GHz and $V_{\pi} = 1.4 V$
- BW_{3dB} = 100 GHz and $V_{\pi} = 2.4 V$

[1] P. O. Weigel, J. Zhao, K. Fang et al., Optics Express, 26(18), 23728-23739 (2018).
[2] A. J. Mercante, S. Shi, P. Yao et al., Optics Express, 26(11), 14810-14816 (2018).
[3] C. Wang, M. Zhang, X. Chen et al., Nature, 562(7725), 101-104 (2018).

State-of-the-Art Modulators

Very recently: impressive progress in LiNbO₃ modulators

- Oxide-bonding thin-film LiNbO₃ on SiP chip
- BW_{3dB} > 106 GHz

Uni. Delaware

- Crystal ion sliced LiNbO₃
- $V_{\pi,DC} = 3.8 \text{ V} \cdot \text{cm}$

Harvard

- LiNbO₃ on Si
- Length 20 mm
- IL = 0.5 dB
- BW_{3dB} = 40 GHz and $V_{\pi} = 1.4 V$
- BW_{3dB} = 100 GHz and $V_{\pi} = 2.4 V$

A modulator *simultaneously* displaying sub-THz frequency responses, high power handling and high linearity is needed

Contents

- Introduction
 - The wireless revolution and the bandwidth bottleneck
- Plasmonic Modulators for THz Applications
 - Plasmonic phase and intensity modulators
- Analog Performance Characterization
 - Nonlinear distortions
 - Power handling
 - Speed tests
- Applications
 - Plasmonic links: sub-THz analog link
 - Plasmonic beamforming: ultrafast beamsteering at mm-waves
 - Plasmonic mixers: direct THz-to-optical conversion

Conclusions

Plasmonic Modulators

- Compact (<25 μm-long) [1, 2]
- High-speed (>325 GHz) [3]
- Operation:
 - Light from input waveguide excites a surface plasmon polariton (SPP)
 - SPPs: electromagnetic surface waves propagating at dielectric-metal interfaces
 - Nonlinear material in the slot: refractive index changes via Pockels effect:

[1] S. A. Maier, Plasmonics: Fundamentals and applications. Academic Press, 2007.
[2] A. Melikyan et al., "High-speed plasmonic phase modulators," Nat. Photon., vol. 8, no. 3, pp. 229-233, 2014.
[3] S. Ummethala, T. Harter, K. Köhnle et al., "Terahertz-to-Optical Conversion Using a Plasmonic Modulator," OSA Technical Digest (online). STu3D.4

Plasmonic Modulators

- Compact (<25 μm-long) [1, 2]
- High-speed (>325 GHz) [3]
- Operation:
 - Light from input waveguide excites a surface plasmon polariton (SPP)
 - SPPs: electromagnetic surface waves propagating at dielectric-metal interfaces
 - Nonlinear material in the slot: refractive index changes via Pockels effect:

[1] S. A. Maier, Plasmonics: Fundamentals and applications. Academic Press, 2007. [2] A. Melikyan et al., "High-speed plasmonic phase modulators," Nat. Photon., vol. 8, no. 3, pp. 229-233, 2014.

How can they be <u>compact</u> and <u>fast</u>, at the same time?

Plasmonic Modulators

Compact

- Efficient electro-optic (Pockels) effect
- Narrow slot
 - \rightarrow Perfect overlap of opt. and el. fields
 - \rightarrow Plasmonic slow-down effect

Fast

- Instantaneous Pockels effect
- Small RC-time constant → THz bandwidth

Energy-efficient

Small V_π (~3 V) & small capacitance

Disadvantage: High losses (0.5 dB/µm)

C. Haffner et al., Proc. IEEE, 104: 2379 (2016) W. Heni et al., JLT 34, 2 (2016)

Photonic-Plasmonic Mach-Zehnder Modulator

C. Haffner et al., Proc. IEEE, 104: 2379 (2016) W. Heni et al., JLT 34, 2 (2016)

Contents

- Introduction
 - The wireless revolution and the bandwidth bottleneck
- Plasmonic Modulators for THz Applications
 - Plasmonic phase and intensity modulators

Analog Performance Characterization

- Nonlinear distortions
- Power handling
- Speed tests
- Applications
 - Plasmonic links: sub-THz analog link
 - Plasmonic beamforming: ultrafast beamsteering at mm-waves
 - Plasmonic mixers: direct THz-to-optical conversion

Conclusions

RF power (dBm)

Two-tone test E/O Fiber O/E RF in RF out **Input Spectrum** 0 f_2 f_1 -20 -40

-60 -80 0 1 2 3 Frequency (GHz)

IMD: Intermodulation Distortions **HD**: Harmonic Distortions

Plasmonic MZM: Linearity Tests

- Device under test: 25 µm-long, 65 nm wide slot
- V_π≈ 3 V

Plasmonic MZM: Linearity Tests

- Two-tone-test at 21 GHz ± 1 kHz
- Computer-controlled experimental setup
- High power handling photodetector (100 mW, BW_{3dB} = 18 GHz)

Plasmonic MZM: Linearity Tests

- Power sweep: -13.3 dBm to -3.3 dBm
- Second-order (IMD2) and third-order (IMD3) intermodulation distortions

Plasmonic modulator

*V*_{π, DC} ≈ 3 V

Plasmonic MZM: Linearity Tests

Power sweep: -13.3 dBm to -3.3 dBm

Plasmonic modulator

Second-order (IMD2) and third-order (IMD3) intermodulation distortions

GaAs MZM (u²t)

M. Burla et al., "500 GHz plasmonic Mach-Zehnder modulators for sub-THz microwave photonics," APL Photonics, 4 (2019). (Featured Article)

Plasmonic MZM: Linearity Tests

Power sweep: -13.3 dBm to -3.3 dBm

Plasmonic modulator

Second-order (IMD2) and third-order (IMD3) intermodulation distortions

GaAs MZM (u²t)

Plasmonic modulators are as linear as the best commercial ones

M. Burla et al., "500 GHz plasmonic Mach-Zehnder modulators for sub-THz microwave photonics," APL Photonics, 4 (2019). (Featured Article)

Plasmonic MZM: Power Handling

- Adding two power amplifiers (PA)
- 24.4 dBm (18.1 V_{p-p}) total RF power @ MZM input (limited by RF PAs)
- No degradation observed

 Use of two tunable laser sources and a UTC-PD (270-370 GHz) to generate sub-THz waves

 Use of two tunable laser sources and a UTC-PD (270-370 GHz) to generate sub-THz waves

- Clear modulation sidebands visible up to 500 GHz
- Only limited by bandwidth of UTC-PD

- Clear modulation sidebands visible up to 500 GHz
- Only limited by bandwidth of UTC-PD

- Normalizing the optical sideband power to the optical input power
- Flat response up to 500 GHz

M. Burla et al., "500 GHz plasmonic Mach-Zehnder modulators for sub-THz microwave photonics," APL Photonics, 4, 056106 (2019). (Featured Article)

- Normalizing the optical sideband power to the optical input power
- Flat response up to 500 GHz

M. Burla et al., "500 GHz plasmonic Mach-Zehnder modulators for sub-THz microwave photonics," APL Photonics, 4, 056106 (2019). (Featured Article)

Contents

- Introduction
 - The wireless revolution and the bandwidth bottleneck
- Plasmonic Modulators for THz Applications
 - Plasmonic phase and intensity modulators
- Analog Performance Characterization
 - Nonlinear distortions
 - Power handling
 - Speed tests

Applications

- Plasmonic links: sub-THz analog link
- Plasmonic beamforming: ultrafast beamsteering at mm-waves
- Plasmonic mixers: direct THz-to-optical conversion

Conclusions

325 GHz microwave photonic link

Link gain

- Remove frequencydependent losses of mmwave extension module
- Calculate ratio between output and input mm-wave power

M. Burla et al., "500 GHz plasmonic Mach-Zehnder modulators for sub-THz microwave photonics," APL Photonics, 4, 056106 (2019). (Featured Article)

325 GHz microwave photonic link

- Remove frequencydependent losses of mmwave extension module
- Calculate ratio between output and input mm-wave power
- Link gain is relatively flat over 220-325 GHz (> 100 GHz bandwidth)
- Only limited by the spectrum analyzer extension module

M. Burla et al., "500 GHz plasmonic Mach-Zehnder modulators for sub-THz microwave photonics," APL Photonics, 4, 056106 (2019). (Featured Article)

Noise and SFDR evaluation

Noise power density:

$$P_{\rm N} = (1+g)P_{\rm th} + \frac{1}{4}P_{\rm shot} + \frac{1}{4}P_{\rm rin} + \frac{1}{4}P_{\rm EDFA}$$

• Evaluation for our link:

Noise term	Power (logarithmic scale)	Power (linear scale)
Thermal noise (modulator, <i>P</i> _{th.MZM})	-197.7523 dBm/Hz	1.6779e-12 W
Shot noise (P _{shot})	-163.3311 dBm/Hz	4.622e-09 W
Relative intensity noise (<i>P</i> _{rin})	-152.7666 dBm/Hz	5.2635e-08 W
EDFA noise (P _{EDFA})	-153.28 dBm/Hz	4.6767e-08 W
Thermal noise (photodetector, <i>P</i> _{th,PD})	-173.9752 dBm/Hz	4.0039e-10 W
Total noise power (<i>P</i> _N)	-149.8119 dBm/Hz	1.0443e-07 W

• Noise figure:

$$NF = 10 \log_{10} \left(\frac{P_N}{gkTB} \right) = 45.8 \text{ dB} @ 300 \text{ GHz}$$

Noise and SFDR evaluation

• Spurious-free dynamic range:

 $SFDR_3 = 105.2 \text{ dB/Hz}^{2/3}$ $SFDR_2 = 109.5 \text{ dB/Hz}^{1/2}$

Contents

- Introduction
 - The wireless revolution and the bandwidth bottleneck
- Plasmonic Modulators for THz Applications
 - Plasmonic phase and intensity modulators
- Analog Performance Characterization
 - Nonlinear distortions
 - Power handling
 - Speed tests
- Applications
 - Plasmonic links: sub-THz analog link
 - Plasmonic beamforming: ultrafast beamsteering at mm-waves
 - Plasmonic mixers: direct THz-to-optical conversion

Conclusions

Symbol-by-Symbol Beamsteering

Ultra-fast Beam Steering

R. Bonjour et al., "Ultra-fast Millimeter Wave Beam Steering." JSTQE, Feb. 2016.

Plasmonic Beamformers for Antenna Arrays

• 4-Elements Integrated Ultra-fast Beam Steering Beamformer

Expected up to 100s GHz steering speeds (symbol-by-symbol)

R. Bonjour et al., "Plasmonic Phased Array Feeder Enabling Ultra-Fast Beam Steering at Millimeter Waves," Opt. Express 24, 25608-25618 (2016).

System Demonstration

R. Bonjour et al., "Plasmonic Phased Array Feeder Enabling Ultra-Fast Beam Steering at Millimeter Waves," Opt. Express 24, 25608-25618 (2016).

System Demonstration

Experimental setup

R. Bonjour et al., "Plasmonic Phased Array Feeder Enabling Ultra-Fast Beam Steering at Millimeter Waves," Opt. Express 24, 25608-25618 (2016).

System Demonstration

Use of narrowband receivers possible

R. Bonjour et al., "Plasmonic Phased Array Feeder Enabling Ultra-Fast Beam Steering at Millimeter Waves," Opt. Express 24, 25608-25618 (2016).

Contents

- Introduction
 - The wireless revolution and the bandwidth bottleneck
- Plasmonic Modulators for THz Applications
 - Plasmonic phase and intensity modulators
- Analog Performance Characterization
 - Nonlinear distortions
 - Power handling
 - Speed tests
- Applications
 - Plasmonic links: sub-THz analog link
 - Plasmonic beamforming: ultrafast beamsteering at mm-waves
 - Plasmonic mixers: direct THz-to-optical conversion

Conclusions

Direct Millimeter Wave to Optical Conversion

Plasmotenna

Antenna Arms

Melikyan, A., et. al, Nat. Photonics (2014) Salamin, Y., et. al, Nano Letters (2015)

WLight

mburla@ethz.ch

29.04.2021

57

·Χ

Plasmotenna – Field Enhancement by Resonance

Plasmotenna device

Resonance condition

$$Z = R - j \left(\frac{1}{WC_{slot}} - WL_{Arm} \right)$$

$$L_{Arm} = C_{slot}^{*}$$

Salamin, Y., et. al, Nano Letters (2015)

Further enhancement of the electric field in the slot using *resonant* structure

Efficient Wireless-to-Optical Conversion

- "Four-clover-leaf"-shaped resonant antenna at 60 GHz
- 92,000× field enhancement in the slot

Y. Salamin et al, CLEO (2016)

Microwave Plasmonic Mixer

- Virtual fibers (point-to-point fiber-wireless links)
- Directly map a wireless signal to an optical fiber without the need for any electrical power connection.

Y. Salamin et al., "Microwave plasmonic mixer in a transparent fibre-wireless link", Nature Photonics (2018), DOI: 10.1038/s41566-018-0281-6

Mirowave Plasmonic Mixer

Experimental setup

Y. Salamin et al., "Microwave plasmonic mixer in a transparent fibre-wireless link", Nature Photonics (2018), DOI: 10.1038/s41566-018-0281-6

Mirowave Plasmonic Mixer

20 Gbps up to 1 m; 10 Gbps up to 5 m

Y. Salamin et al., "Microwave plasmonic mixer in a transparent fibre-wireless link", Nature Photonics (2018), DOI: 10.1038/s41566-018-0281-6

300 GHz Plasmonic Mixer

Y. Salamin et al., "300 GHz Plasmonic Mixer", IEEE International Topical Meeting on Microwave Photonics (MWP 2019), Ottawa, Canada, Oct. 2019. (Best Student Paper Award)

Contents

- Introduction
 - The wireless revolution and the bandwidth bottleneck
- Plasmonic Modulators for THz Applications
 - Plasmonic phase and intensity modulators
- Analog Performance Characterization
 - Nonlinear distortions
 - Power handling
 - Speed tests
- Applications
 - Plasmonic links: sub-THz analog link
 - Plasmonic beamforming: ultrafast beamsteering at mm-waves
 - Plasmonic mixers: direct THz-to-optical conversion

Conclusions

Conclusions

- The THz region above 300 GHz can solve the speed bottlenecks of today's wireless communications
- The creation of analog radio-over-fiber links at THz frequencies is **not trivial**
- We showed a modulator with a flat response up to 500 GHz, high power handling and high linearity, simultaneously
- We implemented an analog optical link with >100 GHz bandwidth and a plasmonic mixer for direct THz-optical conversion
- Strong potential to enable microwave photonics applications to reach the THz range

Acknowledgments

SNF Ambizione Grant (M. Burla)

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation ERC "PLASILOR" Grant (Prof. J. Leuthold)

- **IEF Group at ETH Zurich** (Zurich, Switzerland):
 - C. Hoessbacher, W. Heni, C. Haffner, Y. Fedoryshyn, D. Werner, T. Watanabe, Y. Salamin, and J. Leuthold
- **MWE Group at ETH Zurich** (Zurich, Switzerland):
 - Prof. C. Bolognesi, M. Leich, H. Benedikter
- University of Washington (Seattle, USA):
 - Dr. D. L. Elder, Prof. L. R. Dalton
- Fraunhofer IAF (Freiburg am Breisgau, Germany):
 - H. Massler

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Thank you

THE R.

mburla@ethz.ch